Raumzeit-NetzWerk
Überholen ohne einzuholen. Denke einfach. *Man muß alles so einfach wie möglich machen.  Aber nicht einfacher.* Albert Einstein
 
 
 








Elektron

Autor: Roland Stodolski



Bohr-Radius/Grundniveau-Radius des Elektrons im H-Atom


30.04.20 EDD-Basierung von a0“

Auf der EDD-Ebene kann der VF des Bohr-Radius

a0“ = 0,52917721067

wie folgt auf  eine Pentagon-Fläche zurückgeführt werden :

a0“ = (A51/(12*1000)^0,1 = (1,721913487022/1000)

 a0“ = (AEDD´/(12*1000))^0,1 = (20,662961844265/(12*1000))^0,1

mit

AEDD´ = 20,662961844265 = 13+7,662961844265 13+VEDD´

VEDD´= 10*sin50,0224.

1.05.20

Das bedeutet im Umkehrschluss: Der Bohr-Radius spannt gem.

a0^10 = 0,52917721067^10 *10^-100  m^10 = 1,721913487022*10^-103 m^10

10-dimensional im Maßstab 1:10^-103   eine  Pentagon-Fläche A51 des Pentagon-EinheitsDoDekaeders EDD auf.

3.05.20

Die  pentagonale Pyramide mit10 Kanten, die auch Grundbaustein des   Dodekaeders ist, kann einen  10-dimensionalen  Körper darstellen. 

Die Grundsummen/Dreieckzahl-Basierung des ganzzahligen Exponenten Xa0 = -10 des Bohr-Radius  erschließt sich gem. 

Xao = log a0 = -(1+2+3+4) = -10 = -s4

unmittelbar als Summe s4 der natürlichen Zahlen von 1 bis 4.




20.02.19 Bohr-Radius per EB-G

Wie früher bereits gezeigt wurde, kann der Bohr-Radius gem.

a0 = 0,52917721067 *10^-10 m = a0“ *10^-s4 m (1)

a0” = 0,52917721067 = (tan36,033854003211)^2 = (tan36´^2) (2)

grundsummen/grundwinkel-basiert dargestellt werden. Die Feinapproximation des Grundwinkels gelingt dabei mit

36,033854003211 = 36+0,1*(8-7,66145996789) (3)

und

VEDD´= 7,66145996789 = 10*sin(50,009+0,5298189/10^4) (4)

wiederum per EB-G

tan(36+x)^2- tan (36+0,1*(8- 10*Sin (50,009+tan(36+x´)^2/10^4)))^2, (5)

die bereits für x=x´ ein innerhalb der Fehlertoleranz mit (2) übereinstimmendes Ergebnis liefert.

25.02.19  Bohr-Radius: Grundsummen-Basierung per geometrischer Reihe

Der quadratische VF des Bohr-Radius stellt sich gem.

a0“^2 = 0,52917721067^2 = 0,2800285202925 (6 a)

a0“^2 = 1,000001848*0,28/( 1-0,0001)  (6 b)

a0“^2 = 1,000001848`/0,999* 28/100  = 1,000001848`/0,999* s7/100 (6 c)

grundsummen-basiert als feinkorrigierte geometrische Reihe dar.( 0, 2800 =0,280028002800…) Die Feinkorrektur lässt sich dabei

gem.

a0“^2 = (1+(43^2-1)/10^9)*0, 2800 (6 c)

vorzüglich einfach auf den ganzzahligen Komplement-Winkel 43 des quanten-taktisch/trigonometrischen GoldenWinkels zurückführen.

 

 

22.02.19 Vollständige Oberflächen/Volumen-Abbildungen der Elementarladung und der Elektron/Proton-Massen

Mit der definitiven Festlegung der reziproken Feinstruktur-Konstante 137´ = 137,035999139 als quanten-taktisch/trigonometrischen GoldenWinkel ergibt sich für den Elementarladungs-VF als Oberflächen-String

e“ = 1,602176634 = A51/tan47´ (1 a)

e” = 1,25*tan54´/tan47´ = 1,25*cot36´/tan47´(1 b)

mit

47´ = 47,035999139 (2)

und

54´ = 53,997029366941 = 90-36,002970633059. (3)

Die Elementarladung ist gegeben durch

e = e“*10^-57/3 C = e“ *10^-19 C. (4 a)

e = A51/tan47´*ρe1*10^-19 = 1,25*tan54´/tan47´*10^-19 (e1=C) (4 b)

Für die Elektronenmasse

mE = mE“ *10^-(3*10) kg = 0,9109383555654 *10^-30 kg (5)

erhält man

mE“ = 0,9109383555654 = Vpr = A51´*a0" (6 a)  (Vpr=Prismenvolumen)

mE“ = A51´*a0" = 1,25*tan54” *a0” (6 b)

mE“ = 1,25*0,52917721067*tan54“ (6 c)

mit

54”= 54,0149852523813 = 54*(1+0,1/(360+sin20,75)) (7 a)

54”= 53,7+Pie5´/10 = 53,7 + 3,6*tan (5+0,001*(1-sin36,039´)). (7 b)

Damit resultiert schließlich

mE = mE” *10^-(3*10) kg = Vpr(mE”)* ρm1*10^-30 (8 a)

mE = 1,25*tan54” *a0” *10^-30 (mE1=kg) (8 b)

mE = (e/e1)*tan47´*(a0/(10a1))*1´mE1 =kg) (8 b)

mE = 0,9109383555654*10^- (19+10+1)) kg (8 c)

mit

1´= (tan54”/tan54´) = 1,0006592962386 =1/cos(2+cos(1,3556`)/12,5). (9)

Für die Protonenmasse folgen mit

mPr = mE*10^3/cos57´ (10)

und

mPr” = 1,25*tan54” * a0”/cos57´ (11)

die Darstellungen

mPr = mPr” *10^-(3*9) kg = Vpr(mE”)* ρm1*10^3/cos57´ *10^-(30) (12 a)

mPr = 1,25*tan54”* a0” /cos57´*10^-27 (m1=kg) (12 b)

mPr = (e/e1)*tan47´*(a0/(10a1))*1´*10^3/cos57´ kg (12 c)

mPr = (e”*tan47´/cos57´)*a0”*1´*10^-(30+10+1-3) kg (12 d)

mPr = (e”*tan47´/cos57´)*a0”*1´*10^-27 kg. (12 e)

Zusammenstellung:

Elementar-Ladung

e” = 1,6021776634 = AEDD´/(12*tan47´)

e” = 1,25*tan54´/tan47´ = 1,25*tan54/(1´*tan47´)

e” = 1,25*tan54/(1,00010839254994*tan(47,035999139))

e” = 1,7202909338681/tan 47,035999139

54´= 53,99704687295  

36´ = 90- 54´ = 36,00295312705

Feinapproximation des Grundwinkels 36´:

0,00295312705 = 0,001/(8-7,6613758964417) = 0,001/(8-VEDD´)

VEDD´= VEDD - x = 7,663118960624632-0,001743064182932

x = 0,001743064182932 = 0,1*Pie5`/180 = 0,02*cos85,00015` .

17.04.19 EDD-basierte Feinapproximation des VF der Elementarladung per quanten-taktisch/trigonometrischer EB-G

Für den VF der Elementar-Ladung wurde zuvor die quanten-taktisch/trigonometrische Darstellung 

e“ = A51/tan47´ = (15/12*tan54/tan47´) (1 a)

e“ = 1,602176634 = 15/12*tan54/tan(47,03911469793) (1 b)

aufgezeigt. Zugleich gilt aber auch

A51´2 = (15*tan54´)^2 = 2,9600424859374´ = 50-47,0399575140626´, (2)

wonach das Quadrat einer Fünfeck-Fläche des EDD direkt mit dem Tangens eines variierten GoldenWinkels verknüpft ist. Das führt in Verbindung mit (1) zu

A51e” = 15/12*tan54´ = (50-47,03911469793)^0,5 = 1,720722319861633 (3)

und

54´ = 54,003878220412 =54 + 0,01* V4D´/4 = 1,1+ 0,01*1,60229351468^4/4 (4 a)

54´ = 1,1+ 0,01*15/12*tan54´ /tanx). (4 b)

Davon ausgehend gelangt man mit x=47´zu der EB-G

(15/12*tan(54+0,01*(1,1+0,15/12*tan54/tanx)^4/4))^2-(50-x), (5)

die

x = 47,03911470146 (6)

und damit in Verbindung mit (1 b) hinreichend genau den VF der Elementarladung liefert. 

 Elektronenmasse

6.01.20 Grundwinkel-basierte Darstellung der Elektronenmasse als planck-skalige Liniendichte der Elementarladung

Eine Beziehung zwischen der Elektronenmasse und der Elementarladung, die 2 der 3 Grundbausteine des H-Atoms darstellen, ergibt sich wie folgt. Ausgangspunkt ist die Energie-Äquivalenz von Gravitations- und elektromagnetischer Energie gem.

G*mP*mE /rG  = 10^-7*c^2*e^2/re (1 a)

rp*mE/rG = 10^-7*e^2/re (1 b)

Die Energie-Äquivalenz ist dabei gegeben für das Abstands-Verhältnis

rG/re = rG/re =10^7*10^8*Sin35´*10^-35 (2)

mit

35´= 34,99907666439832 = 35-0,00092 (3)

und der EB-G

0,5735632354396 = Sin(90/2+0,5714964101196) (4 a)

x = sin(90/(2+x´). (4 b)

Damit erhält man gem.

mE = 10^8*Sin35´*10^-35*e^2/rp = 10^8*sinXe´ *10^-Xe* e^2/rp * e^2/rp (3 a)

mE = Sin35´ * ea“^2/rpa“ *10^8*10^-38 *10^-35/10^-35 kg (3 b)

mE = 0,5735632354396 * 1,602176634*1,602176634/1,616266995* 10^-30 kg(3 c)

mE = 0,910938356*10^-30 kg (3

die Elektronenmasse grundwinkel-basiert als planck-skalige Liniendichte des elektrischen Elementarladungs-Quadrats..

(7.01.20) Mit

e^3 = (AEDD´/4Pi)^2 *mPr * mE

4,11273930056305 = 2,69925810877*1,5236554396908  

folgt in Verbindung mit für die Protonmasse

mPr = e*rpa“/( 2,69925810877*Sin35´)*10^-8 =1,602176634*1,616266995/(0,5735632354396*2,69925810877)*10^-27 kg

mPr = 1,672621896*10^-27 kg .

mPr = rpa“*(4Pi/AEDD´)^2*e*10^-8 

mPr = 1,602176634*1,616266995/(0,5735632354396*2,69925810877)

 mPr = 1,672621896*10^-27 kg.

28.07.19 Massives 5-dimensionsles Ereignis-Volumen des Elektrons

Das massive Ereignis-Volumen des Elektrons ist mit den aktuell empfohlenen Standard-Werten gegeben durch 

mE5d = mE*a0^3*tE =9,1093835557*0,52917721067^3 *2,418884324853*10^-(31+30+17) (1 a)

mE5d = 3,26518270255888*10^-78 = 1,2670142442952646^5 *10^-78  (1 b)

mE5d = tan 72,97218628977547*10^-78 = tan(10^4/137,0385143771025) *10^-78 (1 c)

Der ganzzahlige Exponent ist danach gleich dem halben Exponenten des massiven Ereignis-Volumens der Planck-Einheiten, d.h. größenordnungsmäßig entfällt der Faktor rP*tp. Der Vorfaktor stellt sich als Tangens eines real-variierten Zentriwinkels 360´/5 = 73´ und kann mit dem Kehrwert von 137´ verknüpft werden. Für den gebrochenen Exponent der 10er-Potenz gilt danach

XE5d(log)´ = -77,89721850257191945 = -(77 +1/ri1´) = -(77+1/1,1145557042498). (2)

Der gebrochene Exponent der e-Funktion stellt sich gem.

XE5d(ln)´ = -179,36497410972206 = =- (358 +tan36,1275086742135)/2 (3)

als real-variierter Halb-Umfangswinkel 180´ dar. Die Kantenlänge des angenommenen 5-dimensionalen Würfels  

lw = 1,2670142442952646 = 43,0784843060389964/34 = 43/34*3,14732674008454/Pi (4 a)

3,14732674008454 = Pie4´ = 45*tan4,0007858232661 (5)

 und

lw  = 43/33,9380557034834 = 43/34*Pi/3,13586901397605 ( 4 b)

3,13586901397605 = Pii6´ = 30*sin 6,00002902835227 = 30*sin (6,000029029-0,67/10^9) (6)

kann Pi´-korrigiert als Verhältnis der real-variierten Grundwinkel 43´ und 34´ formuliert werden.

 


19.07.20  String-Relationen des Elektrons per ELD

Geht man von verknüpften String/Saiten im grundwinkel-basierten RaumZeit-NetzWerk aus, so

sollten die Strings der Elektronen- und der Planck-Masse sich in einem entsprechenden rechtwinkligen Elementar-Dreieck (ELD) wiederfinden. Gem.

me”/mP” = 0,91093835/2,17641822263 = 0,4185493121351

ergibt sich mit dem PlanckMasse-String mP“ als Hypotenuse und dem ElektronenMasse String me“ als Kathete ein Dreieckwinkel von 

73,0499861 /10^4 = 365,2499305/5 *10^-4 = 4Pi*5,3912582902^2*10^-4 

mit

x = 5,3912582902 = 5,3912863778*cos(1/5,4085613565) = tp“ *cos(1/tp“)´

und der EB-G

x = 5,3912863778*cos(1/x´ ).

Mit mP“ als Ankathete sowie e“ als Kathete erhält man einen ähnlichen  Dreieckwinkel von

73,0519352 /10^4 = 365,259676/5*10^-4 = 4Pi*5,39133021376^2*10^-4

mit

x = 5,39133021376 = 5,3912863778/cos(0,23110008719) = tp”/cos(10*(43+logtp”) ´)

sowie der EB-G

x = 5,3912863778/cos(10*(43+logx). Beide Dreieckwinkel sind danach mit dem String der Planckzeit tp“ und dessen Kugeloberfläche APZK = 4Pi*tp“^2 = 5*73´= 365´ verbunden. In einem *inversen * ELD (Vektor-Dreieck) sind gem.

ve/c = 1/137,03599904 = 0,007297352571626860 =sin0,418111214860

mit einem Dreieckwinkel von 0,4181112148600,418111214860

und einem ve/c = Kathete/Hypotenuse-Verhältnis                                   

72,97352571626860 /10^4  = 364,867628581343/5*10^-4 = 4Pi*5,38843607473^2

mit

5,38843607473 = Pi/sin35,6635837306 = Pi/sin(28+ 7,6635837306) = Pi/sin(s7+ VEDD´) = uPUK

die Geschwindigkeit der Elektronen im Grundzustand und die Lichtgeschwindigkeit verankert.

27.07.19 Darstellung der Elektronen-Masse als e-Funktion

Die aktuell empfohlene Elektronenmasse () ist gegeben durch

mE = e^(-ln(m(vkg))-Zn) = e^(-56,085462045-13,085370795605403) (1 a)

mE = e^(ln(m(vkg)-Zn) = e^(-(56+0,01*e*Pi´)-(13+0,01*e*Pi“) (1 b)

Pi´= 3,143972935597 = 72*tan 2,500305826955 = 72*tan(2,5+0,001*log2,02)(2)

Pi“ = 3,140616057967708 =120*cos 88,50029504972151 = 120 *cos(88,5*1,000003334´)(3)

wo m(vkg) den sog. Vakuum-Erwartungswert der Masse in kg und Zn den zuvor eingeführten n-abhängigen Zusatz-Exponent der Leptonen bezeichnen. Das (Pi´*e)- und das (Pi“*e)-Korrekturglied unterscheiden sich gem.

0,085462045-0,085370795605403 = 0,000091249394597 = sin(65+0,852304082706204)/10^4. (4)

Daraus ergeben sich schließlich  die EB-G

0,085462045-x/10 - sin(65+x-0,0014´)/10^4 (5)

und die Feinapproximation

Pi“  = Pi´ -0,00335687762929 = Pi´ - 0,01*(8-VEDD´). (6)

Der Zusatz-Exponent ist quanten-trigonometrisch gem.

13,085370795605403 = tan(85+0,2*Pie5´) (7)

Pie5´ = 3,14940440998295 = 36*cot 85,000296112445

Pie5´ = 36*cot(85+(0,18/(Pi-0,000018)-0,057) (8 a)

feinapproximativ darstellbar.

 

 

11.12.17 EDD-basierte  quanten-trigonometrische Formulierung des Exponenten der Elektron-Masse

Die Beträge der ganzzahligen Masse-Exponenten der beiden H-Komponenten Proton und Elektron addieren  sich zum ganzzahligen EinheitsBogen-Winkel

XmPr + XmE = (9+10)*3 = 57, (1)

wobei bei Wahrung der 3-Teiligkeit die größtmögliche Gleichheit der Ganzzahlen in der Klammer  bevorzugt wird. Das führt zu XmPr=-logmPr = 9 *3 =27 und XmE=10*3 =30. Da der VorFaktor   der Elektron-Masse

mE =mEa“ *10^-30 * (kg) (2)

mit                                         

mEa“ = 0,9109383555654 (11)  (Klaus Blaum u. Sven Sturm, MPIK Heidelberg)

approximativ einen  Einheits-RingString darstellt, weicht der Gesamt-Exponent der Elektron-Masse

XmE*=-logmE  = 30,04051101133 (3)

nur geringfügig von dem ganzzahligen Exponent 30  ab. (CODATA 2014: mEa“ = 0,910938356 ; XmE*= -logmE = 30,04051101112)

Das aus 2 unterschiedlichen Quark-Strings zusammengesetzte Proton zeigt dahingegen eine deutlich größere Abweichung vom Ganzzahl-Exponent 27.

Die Ganzzahl-Abweichung des Masse-Exponenten des Elektrons kann EDD-basiert  wie folgt in einfacher Weise quanten-trigonometrisch formuliert werden.

0,04051101133 = 0,1*sin23,89802758982 =0,1*sin(23+ 1/1,11355153375682) (4 a)

0,04051101133 = 0,1*sin(23+ 1/ri1*) (4 b)

mit

ri1* = 1,11355153375682 = ri1 + 0,01*(ri1-1,11)/cos1* (5 )

ri1 = cos36/sin36  (6)

Damit erhält man für cos1* = cos1   den Masse-Exponent innerhalb der Fehler-Toleranz  in Übereinstimmung mit (3)  XmE* = 30,04051101133. 

21.11.18 Eruierung des VF der Elektronenmasse per ELD-Positionierung

Die zuvor dargelegte quanten-taktisch/trigonometrische Formulierung des gebrochenen Exponenten der Elektronenmasse wird nachfolgend weiter vertieft. Für den aktuellen  Betrag-Exponent der Elektronen-Masse gilt

XmE = -logmE = 30+0,040511011329537 = 30+x. (1)

Der ganzzahlige Anteil wurde bereits gem. 57-3*19 =30  auf den Einheitsbogen-Winkel zurückgeführt. Eine Grundwinkel-Basierung des gebrochenen Glieds x des Exponenten gelingt wie folgt. Ausgangspunkt ist ein real-variiertes   66=s11; 24; 90- Elementardreieck/ELD, wonach selbiges gem.

x = 0,040511011329537  =  0,1*sin23,8980275895298 = 0,1*cos66,1019724104702 (2 a)

x = 0,040511011329537  = 0,1*sin24´= 0,1*cos66´(2 b)

im obigen ELD  grundwinkel-basiert positioniert werden kann. Das gebrochene Glied erweist sich dabei gem.

0,8980275895298 = 1/1,113551534116665537 = 1/ri1´ (3 a)

0,8980275895298 = cos 26,099998207 = 26,1*cos(1/47´) (3 b)

wiederum per Inkugel-Radius  ri1´ als EDD-basiert bzw. wie der VF der Lichtgeschwindigkeit in einem 26´; 64´; 90 - ELD  positioniert. Der Vorfakor/VF  kann damit in  Form von

mE" = 10^-0,040511011329537 = 10^-(0,1*sin24´) = 10^-(^0,1*cos(66´=s11)) (4)

quanten-taktisch/trigonometrisch dargestellt werden.

22.11.18

Betrachtet man den Exponent als Winkel, wie früher bereits für das real-variierte planckzeitliche Planquadrat-Raster postuliert, so ergibt sich für den gebrochenen Exponent der Ansatz

0,040511011329537   = (360°+45,11011329537°)/10^4, (5)

wobei 45,11011329537° einen der Diagonalwinkel der  real-variierten Plan-Quadrate/Rechtecke darstellt. Für die komplementären Diagonalwinkel gilt dann die Gleichung

sin(45+0,11011329537)-sin(45-0,11011329537) = 0,0027178898895 = a-b, (6 a)

die schlussendlich feinapproximativ zu der EB-G

sin(45+x)-sin(45-x)=0,001*e- 4´/10^7= a-b (6 b)

und damit zu x = 0,110112988  und mE" =0,9190938355633 führt.

11.8.17 VF-Masse des Elektrons per KomplementWinkel

Nachfolgend wird die vom MPIK-Heidelberg neu bestimmte Ruhe-Masse des Elektrons von

mE = 0,9109383555654 *10^-30 kg (9)

verwendet. Für den VorFaktor ergeben sich danach die trigonometrischen Formulierungen

mEa“ = 0,9109383555654 = tan 42,331590301025 (10 a)

mEa“= 0,9109383555654 = cot47,668409698975. (10 b)

Start-Punkt der Eigen-Bestimmung ist das Verhältnis der NachKomma-Beträge von (10)

0,668409698975/0,331590301025  =2,0157697523385. (11)

Die Abweichung von  2 kann dann wie folgt Pi-basiert werden

3,1539504676922 = Pie6* = 30*tan6,001555409785   (12 a)

0,0157697523385 = 0,15*tant6,001555409785.  (12 b)

Damit gelangt man schlussendlich zu den EBG

3+x-30*tan(6+x*/100)  (13)

und

x/10-0,15 *tan(6+x*/10),  (14)

die in Verbindung mit  (11) feinapproximativ mit (10) übereinstimmend mEa" = 0,91093835571  sowie mEa"=0,910938355365 liefern.

31.12.17  EDD-basierte quanten-taktische/trigonometrische Formulierung  des g-Faktors des magnetischen Moments  des Elektrons und des Myons

Elektron

Der experimentell ermittelte  g-Faktor des magnetischen Moments des Elektrons beträgt  

g = 2+0,00231930436182(52). (1)

Die EDD-Basierung von g gelingt wie folgt. Das über den theoretischen Wert 2 hinausgehende  additive Glied kann gem.

g-2 =0,00231930436182 = (logri1*) /20 (2)

ri1* =1,11272049480012 (3)

mit  einem real-variierten Radius ri1* der EDD-InKugel   verknüpft werden.

Das führt dann zu der EB-G

x = ri1* = cos(36+0,1*tan(7+x*^2))/ tan(36+0,1*tan(7+x*^2)). (4)

Der InKugel-Radius in (3)  kommt dabei dem ri1*= 1,11267720572 der PlanckZeit sehr nahe. Für x=x* erhält   man x=ri1* = 1,11272049701   und damit feinapproximativ g= 0,023193044049. Die Feinst-Approximation x*= 1,000009*x liefert ri1*= 1,11272049483 und g-2 = 0,0023193043624. 

29.7.17 Radius der Elektron-Bahn im Grund-Niveau = Bohr-Radius a=0

Der CODATA-Wert (2014) des Elektron-BahnRadius im Grund-Niveau (Bohr-Radius) ist  gegeben durch

a0 = 0,52917721067*10^-10 m. (1 a)

Der BetragExponent gibt sich gem.

Xa0 = 10 = 1+2+3+4 = s4 (2)

unmittelbar als Summe der natürlichen Zahlen von 1 bis 4 bzw. als Dreieck-Zahl  zu erkennen. Die GrundZahlSummen/GrundWinkel-Basierung des VorFaktors wird nach trigonometrischer Umformulierung gem.

0,52917721067 = 0,80884823892^1/3 = cos36,016446594367^3 (3 a)

0,52917721067 = 0,72744567541^2 = tan36,033854003211^2 (3 b)

sichtbar. Ziel der nachfolgenden Betrachtung ist nun die Gewinnung einer EigenBestimmungs-Gleichung. Auf Basis von (3 b) wird dabei von einer tan36*;tan54*-GrundWinkelBasierung ausgegangen.Zerlegt man das Quadrat in (3 b) gem.

0,52917721067 = tan36,033854003211^2 = tan36* *tan36**  (4 a)

und setzt für einen Faktor

tan36* = 1/cot 36* = 1/1,37035999139,  (5)

so geht  (4 a) über in

0,52917721067 = tan36**/1,37035999139 = tan35,94824339535/1,37035999139. (4 b)

Danach wird die Bestimmung von a0 auf die Ermittlung des GrundWinkels 36**  rückgeführt. Dies gelingt per EigenBestimmngs-Gleichung wie folgt. Der Komplementär-Winkel von 36** ist

54** = 90-36** = 54,05175660465, (6)

Damit ergibt sich ein Winkel-Verhältnis von

54**/36** = 54,05175660465/35,94824339535 = 1,503599383430282, (7 a)

was zu der EigenBestimmungs-Gleichung

54**/36** = 90/x-1  = 1,5 + x*/10^4 (7 b)

mit

x* = (1+0,001*(2-sin47,035999139*))*x (8)

und der Lösung

x= 36** =35,9482433958* (9)

führt.